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1. Introduction

The field of Compressed Sensing (CS) has become popular over the last decade.
Current research focuses on several problems, but the main topics are the optimiza-
tion of sensing matrices for different applications and the improvement of algorithms
for reconstructing a sparse vector from a compressed one. This thesis regards the
second.
A huge leap in CS was made, when [1] showed, that the so called `1-optimization
for reconstruction leads for many matrices to the sparsest solution for which the
direct search is not feasible. There are two reasons, why this increased the interest
in the field of CS: They proved the equality, so a successful reconstruction is guar-
anteed, even if the provided bounds are bad compared to simulation results [2]. And
second, the proposed method, Basis Pursuit, can be formulated as linear program.
With the Simplex algorithm [3], an efficient solver for these is known since 1955 and
so CS became applicable. Since then, many alternatives have been developed, e.g.
the interior point method for linear programs, which is used as default setting in
MATLABs linprog. But also other approaches, like heuristic algorithms performing
greedy choices, e.g. OMP [2] or CoSaMP [4], have become popular.
The Simplex algorithm solves general linear optimization problems and has not been
optimized for the application on sparse vectors in CS so far. It turns out that the
solution of the sparse reconstruction problem is always located in a so called de-
generated corner. The possibility to adapt the Simplex algorithm to recognize and
specifically look for those corners, up to a certain extend, is provided. The range of
this approach is investigated in this thesis.

In Chapter 2, the fundamental principles of CS are given. Afterwards, in Chapter 3,
the Simplex algorithm and modifications to obtain a sparsity aware Simplex algo-
rithm are described in detail. The analysis is provided in Chapter 4. In Chapter 5,
some obstacles for implementation and possible countermeasures are presented. At
the end, Chapter 6 concludes the work and outlines further investigations.
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2. Principles of Compressed
Sensing

2.1. The Problem Statement

Compressed Sensing is a very simple and efficient data acquisition protocol [5].
It reduces a N -dimensional data vector x to a smaller measurement vector µ by
projecting it onto a M -dimensional subspace with M < N

Φx = µ . (2.1)

On one hand, this data acquisition procedure is rather simple, compared to other
methods. On the other hand it is complicated to reconstruct the original vector x
from the compressed vector µ and this is the main problem in CS.

The reconstruction is only possible under certain conditions. First, the original
vector x must be sparse, which means most of its components are zero. Sparsity is
one main keyword in the field of compressed sensing.

Definition 2.1.1 (Sparsity)
The sparsity k of a vector x is given by the number of elements xi of x with xi 6= 0.
E.g. sparsity {0} = 0 and sparsity {

(
1 0 2 0 5

)
} = 3.

How sparse x needs to be, in order to recover it, depends also on the dimensions N
and M . For good compression, it is desired that M � N , but the larger N

M
is, the

harder the reconstruction task. The second important factor is the so called sensing
matrix Φ. It is shown, that the reconstruction works differently well for different
types of matrices. This is explained in the next section.
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2. Principles of Compressed Sensing

2.2. Suitable Sensing Matrices

2.2.1. Properties

There are several possible types of matrices which can be used as sensing matrices.
To describe their quality for reconstruction, the following properties were introduced:

Null Space Property (NSP)

In order to reconstruct the k−sparse vector x from µ, it is necessary that for each
two different vectors x, x′ with sparsity less or equal to k, there exists no com-
mon µ, i.e. Ax 6= Ax′. If Ax = Ax′, then A(x− x′) = 0, where (x− x′) is at
most 2k-sparse.
The null space of A is denoted by

N (A) := {x ∈ RN : Ax = 0} ,

and let
Σk := {x ∈ RN : sparsity{x} ≤ k}

be the set with all vectors with sparsity ≤ k.

Theorem 2.2.1
Given A ∈ RMxN , the following statements are equivalent [6]:

1. Σ2k ∩N (A) = {0}, i.e. the null space does not contain vectors with
sparsity ≤ 2k with exception of the 0 vector.

2. Choose any 2k columns from A, then this matrix has a full rank of 2k.

3. x ∈ Σk, then µ = Ax is a unique 1:1 mapping from x to µ and vice versa.

This means a unique representation of a vector with sparsity less or equal to k occurs
if and only if N (A) does not contain any vector with sparsity less or equal to 2k.
Unfortunately, it is NP-hard to check whether a matrix satisfies the NSP or not,
and therefore, practically not possible.
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2.2. Suitable Sensing Matrices

Restricted Isometry Property (RIP)

Definition 2.2.1 (Restricted Isometry Constant [1])
The k-Restricted Isometry Constant (RIC) δk is the smallest number, such that

(1− δk)‖x‖2`2 ≤ ‖Ax‖2`2 ≤ (1 + δk)‖x‖2`2

holds for all x with sparsity less or equal to k.

This constant gives information how well a matrix A preserves the length of a
vector x at the projection onto the subspace byAx. If δk is very small, the projected
length is approximately as large as the original length, and therefore, the distance
between any pair of k-sparse vectors is preserved.
If there exists a δk ∈ (0, 1) for a matrix A, then this matrix satisfies the RIP of
order k with δk.

Mutual Incoherence Property (MIP)

Another important property for successful reconstruction is the MIP.

Definition 2.2.2 (Coherence [7])
LetA ∈ RMxN be a matrix with ‖·‖`2-normalized columns a1, . . . ,aN , i.e. ‖ai‖`2 = 1
for all i ∈ {1, . . . , N}. The coherence of the matrix A is defined by

η(A) := max
1≤i 6=j≤N

|〈ai,aj〉| ,

with the inner product of x and y: 〈x,y〉 =
N∑
i=1

xiyi.

It was shown that matrices with a small coherence guarantee a successful recon-
struction by certain approaches [8].

2.2.2. Random Sensing Matrices

In [1], it is shown that certain random matrices fulfill the RIP with a very high prob-
ability. Random matrices based on two suitable distribution functions are mentioned
below.
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2. Principles of Compressed Sensing

Bernoulli Sensing Matrix

Matrices with entries consisting of independent, identical distributed (iid) realiza-
tions of ±1 Bernoulli random variables with probability p = 1

2
can be used as sensing

matrices and satisfy the RIP with high probability [9].

Gaussian Sensing Matrix

It is shown in [1] that if one draws the entries of a matrix Φ iid Gaussian with zero
mean and a variance 1

p
, then it satisfies the RIP ’with overwhelming probability’.

Since Gaussian matrices are a popular choice for sensing matrices, they are used for
evaluation and comparison in Chapter 4.

2.2.3. Deterministic and Optimized Sensing Matrices

Recently a lot of work has been done to optimize or construct matrices with respect
to those properties mentioned above. Here, two examples are given.

BCH-based Matrices

The first class, proposed in [10], are sensing matrices created by using linear block
codes, specifically BCH-codes. With this method, it is possible to create binary,
bipolar or even ternary sensing matrices, that satisfy the RIP with a high order.
The drawback of this procedure is the limitation to some fixed dimension ratios
given by the construction method.

BASC-based Matrices

The second class is based on Best Antipodal Spherical Codes (BASC) and proposed
in [11]. They minimize the coherence of the matrices. This optimizing procedure is
applicable for all dimensions and that’s the reason why BASC-based matrices are
used within the scope of this thesis later on for comparison with Gaussian matrices.

6



2.3. Reconstruction

2.3. Reconstruction

For the reconstruction task, a closer look on (2.1) is required.

Definition 2.3.1 (Reconstruction LSE)
Given a sparse vector x ∈ RN and a sensing matrix Φ ∈ RMxN , the compressed
(non-sparse) vector µ ∈ RM is calculated by

µ = Φ · x .

As mentioned, it is desired to find an x̂, such that

Φ · x̂ = µ .

If Φ satisfies the null space property (see Section 2.2.1), it follows x̂ = x. Ways to
find a solution to this linear system of equations (LSE) are described in this section.
A LSE can have in general three different cases:

1. Overdetermined system: If there are more equations than unknown vari-
ables, i.e. M > N , the system has no solution in general. Only if at most N
rows are linear independent, the system can be reduced to one of the following
cases.

2. Square (exact) system: The case with M = N has in general (if Φ has full
rank) one unique solution. It can be calculated via the inverse matrix or by
Gaussian elimination.

3. Underdetermined system: M < N , which is also the case in compressed
sensing, leads to a system with infinite many solutions.

Having an underdetermined system of equations, it is still possible to reconstruct
a single unique solution, but only with respect to some additional constraint. In
many applications it is very common to calculate the Moore-Penrose pseudoinverse
to resolve a unique x̂. This approach minimizes the `2-norm, and therefore, the
energy of the solution, but there are also other possibilities.

Definition 2.3.2 (`p-Norms [8])
The (quasi) `p-norm or simply p-norm with 0 < p <∞ of a vector x = (x1, x2, . . . , xN)
is defined by

‖x‖`p = ‖x‖p :=

(
N∑
i=1

|xi|p
) 1

p

and the ’ `0-norm’ is given by

‖x‖`0 := |{i : xi 6= 0}| ,

7



2. Principles of Compressed Sensing

where |{·}| denotes the cardinality of the set. ‖ · ‖`p is a norm for 1 ≤ p < ∞
and a quasi norm for 0 < p < 1, which means it satisfies all norm axioms except
the triangle equation. ‖ · ‖`0 is no norm, but is typically called one in the field of
compressed sensing, and hence, the quotes.

An `p-ball in RN is given by Bp(r) = {x ∈ RN : ‖x‖`p ≤ r}. For the search of the
unique solution x̂ of an underdetermined system of equations with minimal ‖x̂‖`p ,
one starts with Bp(0) and inflates it by increasing r until one valid solution to
Φx̂ = µ is inside. In some pathological cases there even exist infinite many valid
minimal solutions in respect to one ‖ · ‖`p .

Here a short example for N = 2 and M = 1. Choose Φ =
(
1 2

)
, x =

(
0
2

)

µ = Φx =
(
1 2

)(0
2

)
=
(
4
)
.

First the problem is solved graphically by inflating `p-balls with p ∈ {2, 1, 0.5, 0}
as seen in Figure 2.1. The thick line is the constraint given by the matrix, the
dotted curve and everything within is the `p-ball and the red dots mark the found
solution. For the ’`0-norm’ the ball consists of both axis marked blue. The solu-
tions are: p = 2 :

(
0.8 1.6

)T , p = 1 :
(
0 2

)T , p = 0.5 :
(
0 2

)T , ’`0-norm’:
(
0 2

)T .
x2

x1

x̂

(a) p = 2

x2

x1

x̂

(b) p = 1

x2

x1

x̂

(c) p = 0.5

x2

x1

(d) ’`0-norm’

Figure 2.1.: 2-dimensional example of how to find a unique solution of an undeter-
mined system of equations by inflating `p-balls. The red dots mark the
found solution.

It is possible, for such small dimensions, to retrieve the solutions from the plots.
Also for p = 2, it can be calculated easily using the pseudo-invers as seen here:

x̂ = ΦT
(
ΦΦT

)−1 · µ =

(
1
2

)((
1 2

)(1
2

))−1
· 4

x̂ =

(
1
2

)
· 1

5
· 4 =

(
0.8
1.6

)
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2.3. Reconstruction

The problem is that for most cases, the `2-norm does not lead to the original vec-
tor x. Thinking about the positions of the sparse solutions with 0−sparse in the
origin, 1−sparse on the axis, and so on, one can conclude that the ’`0-ball’ is optimal
for the purpose of reconstruction. Taking a look at the definition of the `0−norm
also explains why it is optimal, because it is the same as for the sparsity in Defi-
nition 2.1.1. So minimizing the `0-norm corresponds directly to the search for the
sparsest solution.

For correct reconstruction, one has to solve the following:

x̂ = argmin
x̃
‖x̃‖`0 subject to Φx̃ = µ . (2.2)

Unfortunately, this problem is NP-hard as shown in [12]. This means, that expo-
nentially many iteration steps in N and M would be needed in order to find the
solution. One had to try every M -dimensional subset of columns of Φ and there
are

(
N
M

)
many. Since this is not feasible for larger examples, there exist different

approaches, which are described below.

2.3.1. Greedy Algorithms

One possibility to tackle this optimization problem is utilizing greedy algorithms. A
greedy algorithm is iterative and only based on local available information at each
extension step. This means there has to be some weighting function to evaluate the
quality of a (partial) solution [13].
Greedy algorithms start with an empty solution set. In each step, the element with
the highest weight is added until no more changes are allowed. The canonical greedy
algorithm looks as follows [13]:

• Sort elements by their weight in descending order: e1, . . . , en

• Set solution set T = ∅

• For k = 1 to n do:
If T ∪ {ek} is a valid (partial) solution, then T = T ∪ {ek}

• Return solution T

It is known that the canonical greedy algorithm finds the optimal solution for a
problem, if the underlying structure is a matroid.

9



2. Principles of Compressed Sensing

Definition 2.3.3 (Matroid [13])
Given a finite set E and a set U of subsets of E. The algebraic structure (E,U) is
a matroid, if the following properties are fulfilled:

1. ∅ ∈ U

2. A ⊆ B, B ∈ U ⇒ A ∈ U

3. A, B ∈ U , |A| < |B| ⇒ ∃x ∈ B \ A : A ∪ {x} ∈ U

The first two properties create an independent system and the third is called the
independent set exchange property.

Orthogonal Matching Pursuit

One famous greedy algorithm for solving (2.2) is the Orthogonal Matching Pursuit
(OMP) [2]. It is used for comparison in Chapter 4 and is described in [7] as follows:

Input: sensing matrix Φ, measurement vector µ
Initialization: S0 = ∅, x0 = 0
Iteration: repeat for k steps, where k is the expected sparsity

jn+1 = argmax
j∈{1,...,N}

{|(Φ∗(µ−Φxn))j|}

Sn+1 = Sn ∪ {jn+1}
xn+1 = argmin

x̃∈RN

{
‖µ−Φx̃‖2, support(x̃) ⊂ Sn+1

}
Output: the k-sparse vector x

The support(x) yields the positions of x with xi 6= 0.
The first step finds the component of x that matches the measurements best. In the
second step, this position is added to the support set S. At last, the vector xn+1

with one more component than xn gets updated.

By performing exactly k iterations, the resulting vector is at most k-sparse. But
since it could happen that a wrong support is chosen in an iteration, more iterations
are used often. If the expected sparsity is unknown, ‖xn+1 − xn‖2 < ε can be used
as termination condition.

10



2.3. Reconstruction

There are examples for which the algorithm fails, but even for cases where success
is not guaranteed by the RIP, the results are usually good.

2.3.2. Convex Relaxations

Another way to tackle (2.2) is provided by convex relaxations. As seen above in
Chapter 2.3.2, out of the presented `p-norms, only the `2-norm gives a wrong solution
for the example. And since the problem is not solvable for the `0-norm, which would
be perfect for the reconstruction problem, there is the question why one should not
use one of the other norms. Indeed, this is possible. Instead of solving (2.2),

x̂ = argmin
x̃
‖x̃‖`1 subject to Φx̃ = µ (2.3)

is calculated. This is called Basis Pursuit [14]. As mentioned before, the `0-norm
minimization has combinatorical complexity. Actually, all p-norms with 0 < p < 1
are not convex and NP-hard to solve [15]. The `1-norm is the convex norm with the
smallest p and can thus efficiently be solved.

Definition 2.3.4 (Convex Set [7])
A subset K ⊂ RN is called convex, if for all x, y ∈ K, the line segment connecting
x and y is entirely contained in K, that is,

tx+ (1− t)y ∈ K ∀t ∈ [0, 1] .

In Figure 2.2 can be seen that the `2- and `1-balls are convex, because for every two
points of the set, their connecting line would also belong to the set. Whereas for
the `0.5- and `0-balls, the red lines do not fulfill this criteria.

(a) `2-ball B2(r): convex (b) `1-ball B1(r): convex

(c) B0.5(r): nonconvex (d) ’`0-ball’: nonconvex

Figure 2.2.: Multiple `p-balls as examples for convex and nonconvex sets. Each red
line connects two points of a set. Since this connection is not contained
in B0.5(r) and B0(r), they are nonconvex.

11



2. Principles of Compressed Sensing

In general, (2.2) and (2.3) do not give the same result. But it is shown in [1] that
if the RIP (see Section 2.2.1) is fulfilled such that δk + δ2k + δ3k < 1 holds, the re-
sults are the same. This bound for a guaranteed successful reconstruction has been
tightened multiple times, e.g. in [16] and [17].

The proof that Basis Pursuit guarantees a successful reconstruction, even if the the-
oretical bounds provided by the RIP are pessimistic [2], is only one reason why it
became popular in the early times of Compressed Sensing. The other is the possi-
bility to translate it into Linear Programs for which well-studied solving techniques
are available. Linear programs are explained in the next paragraph.

Linear Program

Definition 2.3.5 (Linear program in canonical form)
Given A ∈ RMxN , x, c ∈ RN , c0 ∈ R, b ∈ RM with b ≥ 0. Find the maximum
for the objective function

z = c0 + cTx subject to Ax ≤ b, x ≥ 0 ,

where the inequalities are meant componentwise.

Any linear optimization problem with linear constraints can be brought into this
canonical form. Here are possible differences and how to transform them:

• Minimization instead of Maximization:
Minimize ẑ(x) ⇔ Maximize z(x) = −ẑ(x)

• Greater-Equal Constraints:
aT · x ≥ s ⇔ −aT · x ≤ −s

• Exact-Equality Constraints:
aT · x = s ⇔ −aT · x ≤ −s , aT · x ≤ s

• Negativity Constraints (x′ ≤ 0):
x′ ≤ 0 ⇔ x = −x′, x ≥ 0

• Real-valued Variables (xi ∈ R):
xi ∈ R ⇔ xi = x′i − x′′i , x′i, x

′′
i ≥ 0

There are some downsides with this procedure. Each exact-equality-constraint gets
translated into two less-equal-constraints, and therefore, the number of those con-
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2.3. Reconstruction

straints gets doubled. And also the substitution for each real-valued variable in-
creases the size of the problem by doubling the number of those variables.

The Basis Pursuit optimization problem

x̂ = argmin
x̃
‖x̃‖`1 subject to Φx̃ = µ, x̃i ∈ R

can now be rewritten as a linear program in canonical form as

max cT x subject to Ax ≤ b ,

with cT =
(
−1 . . . −1

)
, A =

(
Φ −Φ
−Φ Φ

)
, x =

(
x′

x′′

)
and b =

(
µ
−µ

)
.

This problem is convex, because its solution space is a polytope.

Definition 2.3.6 (Polytope [8])
The intersection of a finite amount of half-spaces is called a polytope. Since each
half-space is convex, the polytope, as their intersection, is also convex.

Now one can apply a solver for linear programs in canonical form, such as the
Interior Point Method or the Simplex Algorithm.
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3. Simplex Algorithm

3.1. Introduction to Linear Optimization

The Simplex algorithm can be utilized to solve linear programs. It is used later on
in this thesis and therefore described here in more detail in the style of [8]. It has
become a famous method for linear optimization since it has was proposed in 1955 [3].
For further description, a linear problem in the following form is assumed:

maximize cx+ c0 subject to Alex ≤ ble, Agex ≥ bge, Aeqx = beq, (3.1)

with x ≥ 0, c ∈ RN , c0 ∈ R, Ale ∈ RMlexN , Age ∈ RMgexN , Aeq ∈ RMeqxN ,
ble ∈ RMle , bge ∈ RMge , beq ∈ RMeq and Mle +Mge +Meq = M . The inequality
constraints are meant componentwise.

3.1.1. Introductory Graphical Approach

The graphical approach is only applicable for small dimensions N ≤ 3. For each
constraint, a (N − 1)-dimensional hyperplane, that satisfies the equality, is drawn.
For less-equal- or greater-equal-constraints the valid solution space below or above
the hyperplane is marked. Then the hyperplane for the objective function is drawn
and translated upwards until the least possible number of solutions > 0 is available.
The remaining solutions are optimal.
In general, there is one possible solution left, but there are cases where the objective
function and the bounding constraint have a (N − i)-dimensional subspace with
1 ≤ i < N in common. Only in these pathological cases, there exist infinite many
optimal solutions.
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3. Simplex Algorithm

Example 3.1.1 (Graphical Optimization)

maximize z = 2x1 + x2 ,

subject to x1 ≥ 2,

x2 ≥ 3,

−x1 + 2x2 ≥ 2,

x1 + 2x2 ≤ 12 .

The result for Example 3.1.1, using the graphical approach, is presented in Fig-
ure 3.1. First, the blue constraint lines are drawn and afterwards the intersection
of the respective solution spaces is shaded. At last the black constraint line is plot-
ted through the origin and shifted upwards until it intersects with the shaded area
in only one point, which is the solution. It is marked with a red dot and has the
coordinates x = (5, 3.5) with the respective value z(x) = 2 · 5 + 3.5 = 13.5 of the
objective function.

0 1 2 3 4 5 6 7
0

2

4

6

x2 ≥ 3

x1 ≥ 2

−x1 + 2x2 ≥ 2

x1 + 2x2 ≤ 12

z = 2x1 + x2

x1

x
2

Figure 3.1.: Example 3.1.1 solved with the graphical approach. The blue lines are
the constraints, the shaded area is the valid solution space, the black
line represents the objective function and the red dot marks the found
solution.

The division of RN into two half-spaces is noticeable for each constraint, as men-
tioned before in Section 2.3.2. Also the convexity of the intersection can be observed
for this example. Given this approach, it is obvious that the optimal solution is al-
ways contained in a corner.
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3.1. Introduction to Linear Optimization

Definition 3.1.1 (Corner, Degenerated Corner)
A point p of a polytope P ⊆ RN is a corner, if p is the intersection of at least
N hyperplanes. If it’s the intersection of more than N hyperplanes, it is called a
degenerated corner.

For visualization, an example of a degenerated corner in R3 is shown in Figure 3.2.
The two left corners are not degenerated, because they are the intersection of N = 3
planes in R3. Only the top of the pyramid is degenerated.

Figure 3.2.: Example for a degenerated corner (right) in R3.

The graphical approach is only applicable for N ≤ 3, as mentioned before. There-
fore, the preparation for a more general, arithmetical version of the solving proce-
dure, which can be used for all N > 0, is given in the next section.

3.1.2. Arithmetical Approach

Transformation into a Simplex Tableau

To apply the Simplex algorithm, the problem has to be transformed into a Simplex
tableau.

Definition 3.1.2 (Simplex Tableau)
The Simplex tableau for a problem as given in (3.1) is:


Ale Islack 0 0 0 ble
Age 0 −Islack Iartif. 0 bge
Aeq 0 0 0 Iartif. beq
c 0 0 0 0 −c0

Σ1 Σ2 Σ3 0 0 Σ0

 .

It is an extended matrix of coefficients for (3.1). For each less-equal- or greater-
equal-constraint, a slack variable contained in Islack is added, and for each greater-
equal- or equal-constraint, an artificial variable is introduced in Iartificial of the Sim-
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3. Simplex Algorithm

plex tableau. The Σi are the sums of the respective entries of the columns above,
which contain an artificial variable. The new solution vector, composed of the old
vector and the additional variables, is denoted as xext. In this thesis, it is often
abbreviated as x, as long as they can be distinguished from the context.

In order to illustrate the role of the slack variables, Example 3.1.2 containing only
less-equal-constraints is provided.

Example 3.1.2 (Slack Variables)

maximize z = x1 + 2x2 ,

subject to x1 + x2 ≤ 4,

x2 ≤ 2,

x1, x2 ≥ 0 .

Rewriting Example 3.1.2 in matrix notation results in:

maximize cx =
(
1 2

)(x1
x2

)
,

subject to Alex ≤ ble

⇒
(

1 1
0 1

)(
x1
x2

)
≤

(
4
2

)
.

The other parts, Age, bge, Aeq and beq are empty, because no greater-equal- or
exact-equality-constraints are given.

The corresponding Simplex tableau is(
Ale Islack ble
c 0 0

)
=

 1 1 1 0 4
0 1 0 1 2
1 2 0 0 0

 .

The first two columns correspond to the basic variables x1 and x2, while the next
two columns, consisting of unit vectors, represent the slack variables Islack. Due to
the fact that Example 3.1.2 contains only less-equal-constraints, no articial variables
are introduced, and hence, the last row, composed of the Σi, can be ignored.

In Figure 3.3a, the solution space for Example 3.1.2 is shown. The blue labeled
lines represent the less-equal-constraints, while the coordinate axes correspond to
the non-negativity constraints. Since the optimum lies always in a corner [8] as
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3.1. Introduction to Linear Optimization

seen before in Example 3.1.1, the corners are investigated in more detail. From
Figure 3.3a, the corners P0 = (0, 0), P1 = (4, 0), P2 = (2, 2) and P3 = (0, 2) are
retrieved.
Inserting the coordinates of P0 = (0, 0) into the extended constraints of Exam-
ple 3.1.2 yields:

0 + 0 + x3 = 4 ⇒ x3 = 4 ,

0 + x4 = 2 ⇒ x4 = 2 ,

0 + 2 · 0 = z ⇒ z = 0 .

Because x3 and x4 can be interpreted as the gap between the investigated point and
the respective constraint (x3 for the first and x4 for the second), the constraints are
not saturated in P0. The value x3 = 4 means there is a gap of 4 for the constraint
x1 + x2 ≤ 4 and x4 = 2 means there is 2 left till the equality of x2 ≤ 2. This can be
seen in Figure 3.3b. The objective function z(x) = z ((0, 0)) = 0 has its minimum.
The next point P1 = (4, 0) leads to:

4 + 0 + x3 = 4 ⇒ x3 = 0 ,

0 + x4 = 2 ⇒ x4 = 2 ,

4 + 2 · 0 = z ⇒ z = 4 .

With x3 = 0, the limit of the first constraint is reached, but x4 = 2 means the
second is not fulfilled with equality as seen in Figure 3.3c. For P3 = (0, 2), it is vice
versa. At both points, z(x) = 4 holds, which already increased the value compared
to P0. At last, P2 = (2, 2) gives:

2 + 2 + x3 = 4 ⇒ x3 = 0 ,

2 + x4 = 2 ⇒ x4 = 0 ,

2 + 2 · 2 = z ⇒ z = 6 .

Here, both constraints are fulfilled with equality (Figure 3.3d) and the objective
function reaches its maximum with z((2, 2)) = 6.

This provides already the principal idea of the Simplex algorithm. It starts in one
corner of the solution space and travels from corner to corner by selecting a neighbor
with a higher value of the objective function until no better corner is available.

In the previous simple example, there are only non-negativity- and less-equal-con-
straints. Therefore, x = 0 is used as starting point, since it is contained in the
solution space for this example. However, this is not necessarily the case for equal-
or greater-equal-constraints. For those cases a Two-Phase-Method is used. In the
first phase, the challenge is to find a valid corner of the polytop (solution) and then
the second phase is for optimization.
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(a) Visualization of the constraints
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(b) Slack (red arrows) for corner P0
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(c) Slack (red arrow) for corner P1
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(d) All slack variables are zero in P2

Figure 3.3.: Visualization of the solution space (shaded red) for Example 3.1.2. The
blue lines and the axes are the constraints, while the dots mark the
corners.
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3.1. Introduction to Linear Optimization

To achieve the goal of the first phase, a secondary objective function z′(x) is created
whenever greater-equal- or exact-equality-constraints are given. This function is
represented in the Simplex tableau by the Σs from Definition 3.1.2 in the last row.

In the following, the procedure is illustrated for Example 3.1.1. First, the equa-
tions with the additional variables and the corresponding Simplex tableau are given:

x1 + 2x2 + x3 = 12

x1 − x4 + x7 = 2

x2 − x5 + x8 = 3

−x1 + 2x2 − x6 + x9 = 2

2x1 + x2 = z



1 2 1 0 0 0 0 0 0 12
1 0 0 -1 0 0 1 0 0 2
0 1 0 0 -1 0 0 1 0 3
-1 2 0 0 0 -1 0 0 1 2
2 1 0 0 0 0 0 0 0 0
0 3 0 -1 -1 -1 0 0 0 7

 . (3.2)

original slack artificial

For the less-equal-constraints, the slack variables measure the space between a point
and the respective constraint from ’below’, as seen in Figure 3.3b for Example 3.1.2.
The minus signs in front of the slack variables for the greater-equal-constraints
induce that this slack is measured from ’above’ the equality.
To reach the valid solution space, artificial variables are introduced into the tableau.
They describe, like the slack variables, the ’gap’ between the current point and
the equality of the constraints. But instead of indicating how much space is left
to improve the solution, their value represents the distance to the valid solution
space. Therefore, in order to get a valid solution, all artificial variables have to be
zero. Because they are all positive, it can be rephrased as ’the sum over all artificial
variables needs to be zero’. Applying this to the example yields:

x7 = −x1 + x4 + 2 ,

x8 = −x2 + x5 + 3 ,

x9 = x1 − 2x2 + x6 + 2 ,

⇒ x7 + x8 + x9 = −3x2 + x4 + x5 + x6 + 7 = 0 = z′(x) ,

which corresponds to the last row of the Simplex tableau and is the secondary
objective function. As soon as its maximum value z′(x) = 0 is reached, a valid
corner is found. Since all artificial variables are zero, they can be removed from the
tableau together with the secondary objective function.
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3. Simplex Algorithm

The Simplex Step

For a given Simplex tableau, the corresponding corner can be extracted with the
help of columns containing unit vectors. Only those are used to determine the
vector x corresponding to a point. The elements of b corresponding to the ones
of the unit vectors give the non-zero elements of a corner. In tableau (3.2) it is
x = (0, 0, 12, 0, 0, 0, 2, 3, 2).

For the further description, the following Simplex tableau notation is used:
a1,1 . . . a1,N+M b1
... . . . ...

...
aM,1 . . . aM,N+M bM
α1 . . . αN+M α

 . (3.3)

Let p ∈ RN+M be the corresponding corner of the tableau, then the value of the
objective function is z(p) = −α.

In order to perform a Simplex step, a column j with positive element αj is chosen.
This column is called pivot column. In tableau (3.2) for Example 3.1.1, only the
second column with α2 = 3 is possible. To prevent negative values on the right side
of the tableau, and therefore negative components of x after the step, one has to
look for the pivot row. This is done with the minimal ratio test.

Definition 3.1.3 (Minimal Ratio Test)
For a pivot column j the associated pivot row i is chosen in the following way:

i = argmin
i′

{
b′i
ai′,j
≥ 0

}
.

This ensures that the valid solution space is not left by a Simplex step.

Applying this to tableau (3.2) with the pivot column j = 2 results in the pivot row
i = argmin{12

2
, 2
0
, 3
1
, 2
2
} = 4 and gives the pivot element a4,2 = 2. Creating the unit

vector in column j = 2 by proceeding as for Gaussian elimination:


1 2 1 0 0 0 0 0 0
1 0 0 −1 0 0 1 0 0
0 1 0 0 −1 0 0 1 0
−1 2 0 0 0 −1 0 0 1
2 1 0 0 0 0 0 0 0
0 3 0 −1 −1 −1 0 0 0

12
2
3
2
0
7

 | · (−0.5)
←−−−−−−−+

←−−−−−−−−−−+

| · (−1)

←−−−−−−−−−−−−−−−−−−−+

| · (−1.5)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
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3.1. Introduction to Linear Optimization

Those operations lead to the following Simplex tableau
2 0 1 0 0 1 0 0 −1 10
1 0 0 −1 0 0 1 0 0 2

0.5 0 0 0 −1 0.5 0 1 −0.5 2
−0.5 1 0 0 0 −0.5 0 0 0.5 1
2.5 0 0 0 0 0.5 0 0 −0.5 −1
1.5 0 0 −1 −1 0.5 0 0 −1.5 4

 ,

with the corresponding corner x = (0, 1, 10, 0, 0, 0, 2, 2, 0). For point (0, 1) in
Figure 3.1, the constraint −x1 + 2x2 ≥ 2 is satisfied which corresponds to artificial
variable x9 = 0. Since x8 = x7 = 2 6= 0, the procedure has to be continued.
Choosing a2,1 = 1 as pivot element yields:


0 0 1 2 0 1 −2 0 −1 6
1 0 0 −1 0 0 1 0 0 2
0 0 0 0.5 −1 0.5 −0.5 1 −0.5 1
0 1 0 −0.5 0 −0.5 0.5 0 0.5 2
0 0 0 2.5 0 0.5 −2.5 0 −0.5 −6
0 0 0 0.5 −1 0.5 −1.5 0 −1.5 1


x = (2, 2, 6, 0, 0, 0, 0, 1, 0) .

This corner is still not optimal, because the value of the secondary objective function
is z′(x) = −1 6= 0. That value can be extracted from the bottom right corner of the
tableau, but its sign has to be inverted, as mentioned before.

Definition 3.1.4 (Optimality Criteria)
Given a Simplex tableau as in (3.3) for a corner p ∈ RN+M , then the value of the
objective function is z(p) = −α and can only be improved until α1, . . . , αN+M ≤ 0.
Then, −α is the maximum.

Performing one more Simplex step with pivot element a3,4 = 0.5:
0 0 1 0 4 −1 0 −4 1 2
1 0 0 0 −2 1 0 2 −1 4
0 0 0 1 −2 1 −1 2 −1 2
0 1 0 0 −1 0 0 1 0 3
0 0 0 0 5 −2 0 −5 2 −11
0 0 0 0 0 0 −1 −1 −1 0


x = (4, 3, 2, 2, 0, 0, 0, 0, 0) .
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3. Simplex Algorithm

This corner is optimal, because ∀j : αj ≤ 0 and the secondary objective function
has its maximum z′(x) = 0. Therefore, the first phase is finished.

For the second phase, one further Simplex step with the reduced tableau has to be
calculated. The columns corresponding to the artificial variables and the last row for
the secondary objective function are not needed anymore, and therefore, dropped.
Then, a last step with the pivot element a1,5 is done:

0 0 1 0 4 −1 2
1 0 0 0 −2 1 4
0 0 0 1 −2 1 2
0 1 0 0 −1 0 3
0 0 0 0 5 −2 −11

→


0 0 0.25 0 1 −0.25 0.5
1 0 0.5 0 0 0.5 5
0 0 0.5 1 0 0.5 3
0 1 0.25 0 0 −0.25 3.5
0 0 −1.25 0 0 −0.75 −13.5

 .

This contains the corner x = (5, 3.5, 0, 3, 0.5, 0) with the optimum z(x) = 13.5.

In order to complete the Simplex algorithm, a rule for the choice of the pivot column
is needed. So far, the first positive αj has been chosen, which is called the rule of
Bland.

Definition 3.1.5 (Rule of Bland)
For each Simplex step, choose the first column with a positive αj, and hence, with
the lowest index j as pivot column. Using this rule ensures that the Simplex algo-
rithm ends after a finite number of steps. This prevents cycling even in degenerated
corners.

The downside of the rule of Bland is, that it usually requires far more iterations than
other pivot strategies. Another strategy is the greedy choice which always chooses
the column with the largest αj. But unlike the rule of Bland, this strategy might
result in a degenerated corner, where the algorithm could be caught in a cycle.
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3.1. Introduction to Linear Optimization

3.1.3. The Simplex Algorithm

Each Simplex phase for a Simplex tableau as seen in (3.3) consists of:

DO

1. Choose the pivot column j with αj > 0, e.g. by one of the following
rules: greedy choice or rule of Bland

2. Choose the pivot row i for column j according to the Minimal Ratio
Test as i = argmin

i′∈{1,...,M}

{
b′i

ai′,j
≥ 0
}

→ if ∀i′ ∈ {1, . . . ,M} :
b′i

ai′,j
< 0, then the solution space is unbounded

and there exists no optimum! Therefore, the algorithm can be stopped
with an error message.

3. Transform pivot column j into an unit vector with 1 in row i by per-
forming one Gaussian elimination step

UNTIL (all αj ≤ 0)

The whole procedure for the Simplex algorithm is summarized as a flowchart in
Figure 3.4.
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Figure 3.4.: Flowchart of the Simplex algorithm with objective functions z′(x) for
the first and z(x) for the second phase [8].
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3.2. Consequences for Basis Pursuit

As discussed before, Basis Pursuit corresponds to `1-minimization:

x̂ = argmin
x̃
‖x̃‖`1 subject to Φx̃ = µ .

For the application of Basis Pursuit, a few modifications to the Simplex algorithm
have to be done. Since there are only equality-constraints, the Simplex tableau looks
as follows:  Φeq Iartif. µeq

c 0 −c0
Σ1 0 Σ0

 .

This means there are no slack-variables but M artificial variables, one for each
constraint. Translating the `1-minimization into an objective function, because of
the non-negativity-constraints x ≥ 0, yields:

argmin
x̃
‖x̃‖`1 = min c · x subject to Ax = b ,

with c =
(
1 1 . . . 1

)
and c0 = 0.

Since the Basis Pursuit does not contain non-negativity constraints, a transformation
has to be applied. Each variable x is substituted by two variables x′ and x′′ such
that x = x′ − x′′ with x′, x′′ ≥ 0. Therefore, A =

(
Φ −Φ

)
, xT =

(
x′ x′′

)
and

b = µ. In the previous examples, this step was left out for simplicity so far, since
x ≥ 0.

Example 3.2.1 (Basis Pursuit)

Φ =

(
−9 8 −8 −7
−3 5 −6 −7

)
, x =

(
0 8 0 0

)T
,

Φ · x = µ =

(
64
40

)
.

Creating the Simplex tableau using Φ and µ for reconstruction:
−9 8 −8 −7 9 −8 8 7 1 0 64
−3 5 −6 −7 3 −5 6 7 0 1 40
−1 −1 −1 −1 −1 −1 −1 −1 0 0 0
−12 13 −14 −14 12 −13 14 14 0 0 104

 .
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Using rule of Bland results in column two for pivoting. Since 64
8

= 40
5

= 8, there are
two possible choices for the pivot element. According to rule of Bland, the first one
is used and results in:

−9
8

1 −1 −7
8

9
8
−1 1 7

8
1
8

0 8
21
8

0 −1 −21
8
−21

8
0 1 21

8
−5

8
1 0

−17
8

0 −2 −15
8

1
8
−2 0 −1

8
1
8

0 8

21
8

0 −1 −21
8
−21

8
0 1 21

8
−13

8
0 0

 .

This gives already the correct sparse solution

x̂ =
(

0 8 0 0

)T
from x̂ext =

(
0 8 0 0 0 0 0 0 0 0

)T
,

what is indicated by the same ratio at the search for the pivot row. But since
the termination condition is not satisfied yet, the algorithm continues with the first
column and second row as pivot element.

0 1 −10
7
−2 0 −1 10

7
2 −1

7
3
7

8

1 0 − 8
21
−1 −1 0 8

21
1 − 5

21
8
21

0

0 0 −59
21
−4 −2 −2 17

21
2 − 8

21
17
21

8

0 0 0 0 0 0 0 0 −1 −1 0

 .

The first phase is finished and the tableau still contains the sparse solution after its
reduction. Further Simplex steps are performed until ∀j : αj ≤ 0:

reduction⇒


0 1 −10

7
−2 0 −1 10

7
2 8

1 0 − 8
21
−1 −1 0 8

21
1 0

0 0 −59
21
−4 −2 −2 17

21
2 8



pivot element: a2,7
=⇒


−15

4
1 0 7

4
15
4
−1 0 −7

4
8

21
8

0 −1 −21
8
−21

8
0 1 21

8
0

−17
8

0 −2 −15
8

1
8
−2 0 −1

8
8



pivot element: a1,5
=⇒


−1 4

15
0 7

15
1 − 4

15
0 − 7

15
32
15

0 7
10

−1 7
5

0 − 7
10

1 7
5

28
5

−2 − 1
30
−2 −29

15
0 −59

30
0 − 1

15
116
15
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Now, the solution to the linear program is obtained with

x̂ext =
(

0 0 0 0 32
15

0 28
5

0

)T
,

and

x̂ =
(
x1 − x5 x2 − x6 x3 − x7 x4 − x8

)T
=
(
−32

15
0 −28

5
0

)
.

with ‖x̂‖`1 = 116
15

. This is the correct result for the `1-minimization, but not the
desired sparse solution. It can be verified by calculating Φ · x̂ = µ. But as seen in
the example, the algorithm already had found the sparse solution. It is the one with
a zero on the right side of the tableau. That zero also led to a degenerated corner,
with more zeros than needed for a usual corner in the solution space.
Recognizing that the sparse solution always has to be in a degenerated corner serves
as the basic idea for the proposed sparsity aware Simplex algorithm. The question
is how to find those corners and what modifications to the Simplex algorithm are
needed. This is described in the next section.

3.3. Sparsity Aware Simplex Algorithm

As seen in the example, one reaches a degenerated corner after a Simplex step, if
there are equal ratios at the search for the pivot row for multiple rows. However, it
is not known apriori which column contains such values with the highest probabil-
ity. Deciding between the rule of Bland, which is usually used to prevent reaching
degenerated corners and the greedy choice, the second is more promising. It has also
the advantage that it needs in average fewer Simplex steps than the rule of Bland
to reach the optimum.

The Sparsity Aware Simplex algorithm (SAS) is identical to the Simplex algorithm
from Section 3.1.3 till the end of the first phase:

• Create the Simplex tableau

• Perform the first phase of the Simplex algorithm to maximize z′(x) until αi ≥ 0

• Reduce the Simplex tableau

Afterwards, it is adapted and modified to different variants.
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3. Simplex Algorithm

Here are four versions of the proposed sparsity aware Simplex algorithm. Each one
is a trade-off between increased success rate and computational complexity. They
differ on the amount of columns checked per step for equal ratios, and therefore,
degenerated corners. In principle, each variant adds a certain complexity per step,
but because they terminate when the sparse solution is reached, they potentially
reduce the number of steps. For the description, a tableau as in (3.3) is assumed.

3.3.1. Variant 1: Pivot Column Only

The first version checks only the pivot column for identical ratios. This means the
pivot column p is taken greedy, i.e. with ∀j : αp ≥ αj. Within this, the ratios are
calculated. If equal ratios are found, the first corresponding rows is chosen for the
next Simplex step instead of the one satisfying the minimal ratio test. After the
execution of the step, a degenerated corner is reached and the algorithm terminates.
If there are not equal ratios in column p, the algorithm continues as usual with the
minimal ratio test and the Gaussian elimination step. This makes sure that even
if the sparse solution is not found, the solution of the default Simplex algorithm is
found, and thus, the success rate is at least equal.

The only additional expenses for this version are the checks for equal ratios, since
they are even calculated for the usual Simplex algorithm. This can be done by sorting
those M values, subtract the vector with a shifted version and then looking for a
zero. This is insignificant compared to the other operations done in the algorithm.

3.3.2. Variant 2: Positive Columns

The next version investigates all columns j with αj ≥ 0. If it does not find equal
ratios in any column, it continues with the one of largest αj and performs the minimal
ratio test. This approach seems useful because all columns with αj > 0 lead to a
better solution in respect to ‖ · ‖`1 and one expects the optimal ‖ · ‖`0-solution to be
close to it.

The increase in complexity can be estimated as calculating M ratios, sorting and
vector subtraction for each column with αj ≥ 0. This number is approximately half
the number of columns as rough guess. The possible gain for the success rate is
explained by the additional corners which are considered.
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3.3.3. Variant 3: All Columns

The third variant checks all columns at each Simplex step. Since it considers the
most possible corners on its way to the `1-optimum, it should have the highest
success rate, but also the highest complexity per step. It has to check every N (or
even 2N for xi ∈ R) columns for equal ratios.

3.3.4. Variant 4: `1-Neighbors

Assuming that the `0-solution is close to the `1-optimal corner. Starting from the
`1-solution obtained with the default Simplex algorithm (or also one of the previous
variants), all neighbors of this found corner can be checked for equal ratios. This
might improve the success rate with relatively small computational effort. It is
investigated in Section 4.1.

Example for Basis Pursuit with Sparsity Awareness

Applying each of the proposed variants on the trivial Example 3.2.1 leads to the
sparse solution, since the first phase is exactly the same as seen above. Each variant,
with exception of Variant 4, stops after recognizing the degenerated corner. But even
this finds the sparse solution by searching around the `1-optimum. For this trivial
example the actual sparse reconstruction problem is now successfully solved and
since the number of required Simplex steps is reduced, the calculation time is also
improved.
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4. Evaluation and Comparison

4.1. Exploration of the Solution Space

4.1.1. Number of Corners

The first analysis considers the number of corners in the solution space and how
many of them merge into a degenerated corner depending on the dimension of the
space and the sparsity [18]. This is required to estimate the difficulty of finding the
sparse solution.
Given two subspaces A1,A2 ⊂ RN with dim(A1) = p and dim(A2) = q in general
position, i.e. the coefficients of their matrix representation are chosen randomly.
Then, A1 and A2 intersect in a subspace of dimension

dim(A1 ∩ A2) = dim(A1) + dim(A2)−N

with probability 1 [19, p. 9]. This can be explained by the observation that there
are just finite many cases for a different dimension of the intersection, but infinite
many cases for this dimension. Two low-dimensional examples of common problems
are povided:

Example 1: Intersection of two planes in R3:
dim(A1) = dim(A2) = 2 ⇒ dim(A1∩A2) = 2 + 2−3 = 1 , i.e. the typical solution
space for this constellation is a line.

Example 2: Intersection of two lines in R3:
dim(A1) = dim(A2) = 1 ⇒ dim(A1∩A2) = 1 + 1−3 = −1 , i.e. they are typically
skew and have no solution in common.

There are M random hyperplanes described by Φ from (2.1), each with dimension
N − 1, and therefore, the solution space S(N,M) is a (N −M)-dimensional sub-
space of RN . Considering a k-sparse solution, which is known to be contained in a
k-dimensional subspace V , results in an intersection of dimension

dim(S ∩ V) = N −M + k −N = k −M .
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From this, it can be derived that there are no solutions with sparsity k < M for
M hyperplanes in general position. It can also be seen, that a typical solution is
M -sparse, and therefore, there are

(
N
M

)
possibilities to choose those entries. By this,

the uniqueness of the sufficiently k-sparse solution (for k < M), is shown. Due to
the sparsity, it is always in a degenerated corner.

Comparing the hyperplanes in general position to system (2.1), after multiplication
with a sparse vector x, shows that some of the corners merge into a degenerated
corner. In consequence, the next step is to calculate the number of those corners.
This is analyzed combinatorically in [18], which states that these are

(
N−k
M−k

)
corners.

The line of thought is the following: Because x is a fixed k-sparse vector, contained
in a thereby defined k-dimensional subspace, k values are appointed. Knowing the
corners are usuallyM -sparse leavesM−k positions open, and thus, there are

(
N−k
M−k

)
many possibilities.
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Figure 4.1.: Ratio of corners in the degenerated corner
(
N−k
M−k

)
over all corners

(
N
M

)
for N = 32, M = 16.

As seen in Figure 4.1, a lot of corners merge into the degenerated corner for small
dimensions. For those cases, it is easy to find the sparse solution. Regarding a
randomly selected corner, there is a high probability that it is part of the degenerated
corner. On the other hand, for large k, there are a lot of corners, but only very few
are part of the sparse solution. In these cases, it is like looking for the needle in a
haystack. Thus, random search strategies are not efficient for larger values of k.
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4.1.2. Distance from `1- to `0-Solutions

Since the SAS relies on the ’closeness’ of the `1- to the `0-solution, the question of
their distance distribution arises. This is investigated statistically in this section.
The main problem of the exploration is the huge number of corners that should be
regarded. Actually, the problem is to reconstruct the sparse vector directly, e.g. by
’`0-norm minimization’ and this is practically not possible, because it is NP-hard as
already mentioned. Therefore, the approach is the following: First, the `1-solution
is calculated with the default Simplex algorithm and checked if it is already the
sparse solution. If not, all neighbors of this corner are regarded. Next, each of their
neighbors is checked again, and so on. Since there are approximately Nd neighbors
at distance d, very small dimensions are chosen for the statistical analysis.

For the first simulation, Gaussian sensing matrices of size N = 16, M = 8 are
selected. The results can be seen in Figure 4.2. The percentage of solutions with
a distance d = 0 corresponds directly to the success rate of Basis Pursuit (default
Simplex algorithm). By checking all neighbors of the `1-solution, as performed
by some variants of the SAS, the success rate can be increased by the corners with
distance d = 1. The complexity for this is small, and thus, it is profitable for small k,
relatively to N and M . If k is large, the success rate and also the additional gain
decreases. Here, applying this approach leads to a success rate > 80% up to k = 4,
while the Basis Pursuit falls even for k = 3 below that rate.
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Figure 4.2.: Histograms for the distance from the `1-solution to the sparse solution
in Simplex steps. The dimensions are N = 16, M = 8. The plot is
created with 1000 runs with different Gaussian sensing matrices and
vectors for each sparsity k.
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For comparison with larger dimensions N andM with the same ratio N
M
, a look onto

the histograms for N = 32 andM = 16 is given in Figure 4.3. In Figures 4.2 and 4.3,
one can see that the `1- and the `0-solution are very close to each other for a small
value of the sparsity k. The distance is measured in Simplex steps and increases
with larger k. The smaller the distance d, the easier the sparse solution can be
found. But for larger k it gets considerably harder, since the number of possible
solutions grows exponentially in d. For Figure 4.3 and k ≥ 9, there are cases where
the algorithm does not find the sparse solution and exits premature due to limited
heap space or runtime limitation. Those cases are marked with E.
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Figure 4.3.: Histograms for the distance from the ‖·‖l1-solution to the sparse solution
in Simplex steps. The dimensions are N = 32, M = 16. The plot is
created with 1000 runs with different Gaussian sensing matrices and
vectors for each sparsity k. E is the result if the algorithm does not find
the sparse solution due to heap space or runtime limitations.
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4.2. Comparison of the Reconstruction Algorithms

The algorithms from Section 3.3 are statistically analyzed. The used combinations
are summarized in Table 4.1.

Label Algorithm / Combinations
A Default Simplex
B Default Simplex with SAS Variant 4
C SAS Variant 1
D SAS Variant 1 with SAS Variant 4
E SAS Variant 2 (contains Variant 1)
F SAS Variant 2 with SAS Variant 4
G SAS Variant 3 (contains Variant 2)
H SAS Variant 3 with SAS Variant 4

Table 4.1.: Labeling for the different combinations of modifications to the algorithm.

4.2.1. Success Rate Comparison

The first simulation investigates the behavior of the algorithms from Table 4.1 for
Gaussian sensing matrices with the dimensions N = 32 and M = 16. The re-
sults can be seen in Figure 4.4. It is created by averaging over 1000 runs for each
sparsity k ∈ {1, . . . ,M} with different matrices, sparse vectors and permutations
for the positions of the non-zero values. A reconstruction is declared successful, if
|x̂− x| ≤ 10−14 componentwise. This ε is necessary due to numerical imprecision
and the componentwise check has the advantage over the often used ‖x− x̂‖`2 , that
it varies less for different dimensions.
Investigating the variants without checking the neighbors of the `1-solution, repre-
sented as solid lines, reveals an expected behavior. A (default Simplex) has the
worst success rate and C (SAS pivot) improved the rate without noteworthy in-
crease in complexity. E (SAS positive) has an even higher gain, but not as large as
G (SAS all).
A remarkable improvement just by checking the neighbors of the `1-solution is ob-
served regarding the dashed lines. B is already better than E while having a lower
complexity. All variants benefit from considering the neighbors at the end, but the
more complex the modifications, the less the potential benefit is. This can be ex-
plained with the higher number of neighbors already checked on the path to the
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Figure 4.4.: Comparison of the success rate for the different algorithms and vari-
ants from Table 4.1 using Gaussian matrices with dimensions N = 32,
M = 16. The rate is averaged over 1000 runs for each k with different
matrices and Gaussian values for the sparse vector x with a success if
|x̂− x| ≤ 10−14 componentwise.

`1-solution. H has the best success rate, but also the highest worst case complexity.
Depending on the application, one might prefer D because of the improved success
rate without a significant increase in computing time.
The bad behavior of the OMP algorithm is explainable. One reason are the chosen
dimensions. As seen later on, they have a noticeable influence on the performance.
The other reason is that the used OMP is not optimized for those simulations, i.e.
it uses an ε ≤ 10−7 termination condition and does not exploit the sparsity.

The next simulation, with results in Figure 4.5, is done for the same variants. The
difference is the change of the N

M
-ratio from 2 to 5, and therefore, N = 80, M = 16.

Considering a higher ratio, which corresponds to a higher compression rate, one
expects the success rates to drop. This can be confirmed by comparing Figure 4.4
and Figure 4.5. The performance of all algorithms decreases, but differently. The
OMP is in this case for success rates < 85% better than A and C . The ranking of
the variants of the Simplex algorithm among themselves stays the same.
Comparing the two figures, another observation is the faster ’phase-transition’ from
a 100% success rate to 0%. The edge gets sharper with increasing N .
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Figure 4.5.: Comparison of the success rate for the different algorithms and vari-
ants from Table 4.1 using Gaussian matrices with dimensions N = 80,
M = 16. The rate is averaged over 1000 runs for each k with different
matrices and Gaussian values for the sparse vector x with a success if
|x̂− x| ≤ 10−14 componentwise.

The curves for M = 16 with N
M
∈ {3, 4}, and respectively N ∈ {48, 64}, as interme-

diate steps can be found in the Appendix in Figures A.1a and A.1b.

The behavior for varying N
M

is shown in Figure 4.6. By comparing the default
Simplex algorithm and the OMP in Figures 4.6a and 4.6b, it can be recognized,
that the rate of both algorithms decreases for larger N

M
, but less for the OMP.

Examining Figures 4.6c and 4.6d exhibits similar rates, especially for larger N
M
. This

indicates, that most of the improvement (over A in Figure 4.6a) is due to the ’check
the neighbors of the `1-solution’-strategy, that both variants have in common and
not due to the search of the solution as neighbors of the path.

For further comparison, another type of sensing matrices is considered in the next
section.

39



4. Evaluation and Comparison

0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

(a) Variant A

0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

(b) OMP

0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

(c) Variant D

0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

(d) Variant H

Figure 4.6.: Success rate over k/M for M = 16 with N/M = 1.5 (green), N/M = 2
(magenta), N/M = 3 (red), N/M = 4 (blue) and N/M = 5 (black)
averaged for 1000 runs with Gaussian matrices.
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Figure 4.7.: Influence of BASC matrices on several algorithms from Table 4.1. For
each k ∈ {1, . . . ,M} with M = 16 and N = 32, the rate is averaged
over 1000 runs. The reconstruction is successful if |x̂− x| < 10−14 com-
ponentwise.

4.2.2. Influence of Coherence Optimized Sensing Matrices

In this section, the influence of coherence optimized sensing matrices on the al-
gorithms is investigated. The idea is, that a lower coherence (as defined in Sec-
tion 2.2.1) guarantees a successful reconstruction even for larger values of k for
fixed N , M . The reconstruction rates in the provided simulations are way above
those guaranteed. Whether the algorithms benefit nevertheless is analyzed now.
BASC matrices [11] have low coherence and are used for this purpose. As seen in
Figure 4.7, the success rate for BASC matrices is better than for Gaussian sensing
matrices. The gain for all Simplex based variants is approximately the same, while
the OMP takes a leap. The other variants behave the same and can be found in
the Appendix in Sections A.2 and A.3. The dimensions for the simulations are the
same as for Figure 4.4: N = 32, M = 16. As observed in the figures, the algorithms
do improve by utilizing coherence optimized sensing matrices. The Simplex based
algorithms gain only a little bit, but the OMP improves more, because its choice
of the element, which is added in each iteration, depends directly on the coherence.
The lower the coherence, the less similar the columns of the sensing matrix, and
hence, the better the reconstruction rate. This behavior is described in more detail
in [20].
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4.3. Evaluation for Constant N/M-Ratio

Assuming a fixed N
M
-ratio, the next investigation is performed regarding the change

of the success rate over dimensions. The results of the simulations can be seen in
Figure 4.8.

For A , the default Simplex algorithm, the rate increases for growing M and small
k
M

(≤ 0.3), while for larger k
M

the rate decreases as seen in Figure 4.8a. Again, the
’phase-transition’ becomes sharper, as seen before in Figure 4.5. With increasing
dimensions, the rate becomes close to a step function.

The high reconstruction rate of all algorithms in Figure 4.8 for small values ofM and
relatively large k

M
(0.5 ≤ k

M
≤ 0.8) is due to the small number of corners caused by

the small M . Using the formulas from Section 4.1.1, there are only
(
N
M

)
=
(
8
4

)
= 70

corners, whereof
(
N−k
M−k

)
=
(
5
1

)
= 5 are degenerated for k

M
= 0.75. Even randomly

choosing a corner would have a success rate of about 7%.
For small dimensions, it is also likely that the `0-solution is close to the `1-solution
as described before in Section 4.1.2 and shown in Figure 4.2. Since D and H regard
the neighbors of the `1-optimal corner, and therefore, retrieve not just solutions with
distance d = 0, but also d = 1 for sure, they have an extraordinary high success rate
for those cases.

In addition, D and H perform almost alike (Figures 4.8c & 4.8d) and show for
small M more gain due to their modification compared to A . This can be explained
by the fast growing number of corners for larger dimensions and the related smaller
probability to find the degenerated corner. The considerably higher complexity of
H , because of the investigation of the neighbors on the path to the `1-solution, does
only lead to marginally better reconstruction rate than for D . I.e., depending on the
application, one would prefer D over H . Again, as mentioned before in Section 4.2.1,
this shows that the search for the sparse solution on the path makes up only a small
part of the improvement compared to the gain by looking at the neighbors of the
`1-solution. This, together with the histograms in Figure 4.3 and the behavior in
Figures 4.8c and 4.8d suggests, that for larger dimensions N and M , only very few,
or even no gain at all, can be expected.

The OMP, shown in Figure 4.8b, behaves similar to A , but has a worse success rate
for this setting.
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Figure 4.8.: Success rate over k/M for N/M = 2 with M = 4 (blue), M = 8
(magenta), M = 16 (black), M = 32 (red) averaged for 1000 runs with
Gaussian matrices.
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4.4. Runtime Analysis

At last, a runtime comparison for the different variants of the SAS is performed. The
runtime is measured in Simplex steps applied until their successful or unsuccessful
termination.

Boxplots, or sometimes also called box-and-whisker diagrams, are utilized in this
section for comparison. Therefore, a short recapitulation is provided. Assuming a
data set Y consisting of N values sorted in ascending order y1 ≤ y2 ≤ · · · ≤ yN ,
then the parts of the corresponding boxplot represent:

• The filled circle is the median of Y , i.e. the element yN+1
2
. If N is even, the

median is calculated as the mean of the two middle values. It is denoted as
the second quartile q2.

• The filled box contains all data points from 25th- to the 75th-percentile,
i.e. the N

2
data points in the middle of the set. The 25th-percentile is the first

quartile q1 and the 75th is the third q3.

• The dash contained in the box represents the mean of Y , but is sometimes
hidden by the circle for the median.

• The dotted lines outside the box, limited by the dashes, extend the box by
1.5 times the interquartile range (IQR) to each direction. The IQR is the
difference of the 75th- and the 25th-percentile: IQR = q3 − q1. The two
dashes enclose all values yi with q1 − 1.5 · IQR ≤ yi ≤ q3 + 1.5 · IQR.

• The gray dots represent the outliers not contained in the other ranges.

The advantage of boxplots over diagrams showing only the mean of a set is the
additional information, e.g. about the distribution or, at least, the spread of the
data points.

4.4.1. Steps in the First Simplex Phase

In the first part, an analysis of the behavior in the first Simplex phase is performed.
The number of steps is the same for all variants, because they utilize all the same
strategy. Hence, the analysis is performed over different N

M
-ratios and growing M

for N
M

= 2.

Figure 4.9a shows the Simplex steps needed to finish the first phase, i.e. to find
a valid corner of the solution space. The number of steps varies over N

M
for very
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small k
M
, whereas for larger k

M
the median and the distribution, represented by the

circle and the position of the box, stays almost the same. So for constant M , the
number of required steps is approximately the same. This indicates a direct corre-
lation of iterations and the number of artificial variables M . It might be related to
the goal of the first phase to eliminate them. According to this, the number of steps
should increase for larger M , which is confirmed by Figure 4.9b.
That there are other influences as well, can be retrieved from Figure 4.10. It shows
the required iterations for the first phase utilizing BASC matrices. One observes
small changes for varying N

M
, but relatively constant distributions over k

M
. This

behavior might be due to the quality of the matrices and the setting of the simu-
lation. In Figure 4.9a, 1000 different Gaussian sensing matrices are used, while for
Figure 4.10 it is one for each N

M
. This one is chosen as the best, i.e. with the lowest

coherence, gathered from 10 runs of a matrix optimization procedure. It would be
out of the scope of this thesis to investigate the matrix properties causing this, but it
may be attractive for future research. But as said, it shows, that there are influences
on the number of required steps besides M .

In Figure 4.9b, there are only few data points for small M , since k ∈ N ≤ M , but
the indicated behavior is the same for all plotted values of M . For very small k

M
,

up to about 0.13, fewer steps are needed, while there’s virtually no difference in the
median or the variance for larger k

M
.

More interesting is not just the growing average of the iterations, but also the
increasing spread for larger dimensions as indicated by the bigger boxes.

4.4.2. Steps in the Second Simplex Phase

In the second part, the required iterations for the second Simplex phase are eval-
uated by simulation. The identical zero values for k

M
= 1 in Figure 4.11 are con-

spicuous. As mentioned before, every non-degenerated corner is M -sparse. Because
the sparsity k = M is committed to the SAS variants, they regard every corner as
degenerated and stop after the first Phase. But those values of k are not interesting
since there is no reconstruction possible. The uniqueness is only given for k < M
as derived in Section 4.1.1.
Also for large k

M
, all variants require approximately the same number of steps. In

some cases, even the outliers are the same. This shows that the sparse solution is
not found as a neighbor on the path, because C only regards the visited corners.
Therefore, all algorithms proceed until the `1-solution is found. Again, the rate
for a success reconstruction of the sparse vector in those cases tends to zero, and
therefore, they are not important.
The most interesting cases for small k

M
, possessing a high success rate (see Fig-

ure 4.4), the number of steps varies most. C needs more steps than E and G .
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Figure 4.9.: Boxplot of the number of required Simplex steps for the first Sim-
plex phase using Gaussian sensing matrices. For each of the 1000 runs
per k

M
and N

M
different matrices, sparse vectors and permutations for

the positions of the non-zeros are generated.
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Figure 4.10.: Boxplot of required iterations over k/M in the first phase by the differ-
ent variants (see Table 4.1) of the algorithms utilizing BASC matrices
for M = 16.

Those two variants find the degenerated corner early as a neighbor on their way to
the `1-solution, C directly on the way, but closer to the end. Since E and G require
almost the same number of steps, one can conclude for small k

M
, it is likely for de-

generated corners to occur in a positive direction. Where positive means αi > 0 in
the last row of the corresponding Simplex tableau (ref. to (3.3)).
The default Simplex is not included in this comparison, because it utilizes the rule
of Bland, and therefore, requires way more steps as seen in the Appendix in Sec-
tion A.4.2. Figures for different dimensions can be found there too.
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Figure 4.11.: Number of Simplex steps needed by the different variants for the second
phase with N = 32, M = 16 over k/M .
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5. Implementation Issues

The whole code for this thesis was written in MATLAB [21]. It is not especially
optimized to any criteria. During implementation, several obstacles had to be con-
sidered. This chapter gives an overview to those details in order to simplify the
reproducibility and to show the used methods.

5.1. Numerical Problems

A major problem for implementation is the numerical imprecision due to the number
representation. In theory, the sensing process Φx = µ and the reconstruction of the
sparse solution are defined and calculated over R, but MATLAB uses double floating
point numbers. They have only a precision of approximately up to 10−16 [21]. By
applying arithmetical operations, this inaccuracy accumulates, and therefore, the
more operations are performed, the larger is the difference to the proper value [22].

This behavior needs to be taken into account for comparisons in the algorithms.
There are many steps where it has to be checked whether a value is zero or not,
or if two ratios are equal. Every time a ε-neighborhood with ε > 0 needs to be
defined. However, a good value for this ε, in order to get the correct results, is not
known so far. E.g. reconstructing a vector from a Simplex tableau of a degenerated
corner results in a lot of components that should be zero but have an amplitude
of about 10−15. For verification whether it is a sparse solution or not, one has to
adjust ε. If it is chosen too small, the algorithm might continue the calculation,
leave the degenerated corner and ends up finding a wrong reconstruction. If chosen
too large, a wrong corner with components with a small amplitude might be treated
as a degenerated corner and the algorithm also ends up finding a wrong solution.
The fact that more operations lead to higher inaccuracy and cause a precision loss is
the core problem. It is possible to choose the corresponding ε larger, but this results
sometimes in failures when two different values are treated as if they are equal. In
this thesis, ε is chosen empirically. The results for small dimensions up to M = 32
and N = 128 are satisfying. But for larger dimensions, the probability grows, that
at least one component of a vector falls below this ε-threshold and is treated as
zero, even if it is not. Because the SAS usually stops when it finds a g-sparse corner
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with g < M , the indicated imprecision degrades the success rate. To prevent this,
one can adapt the SAS to stop only if a g-sparse corner with g < M −B, B > 0, is
found. Thus, solutions with k ≥M − B could not be retrieved anymore. Since the
reconstruction rate for those cases is very bad (see Figure 4.5) and the algorithms
are commonly used for small values of k, this trade-off is justifiable.

The especial sensitivity to imprecision of the ratio test for choosing the pivot row is
noticeable during implementation. Since it is important, particularly for the SAS,
an additional strategy is utilized. Instead of taking one ε, two values ε1 and ε2
with ε1 > ε2 are chosen empirically. If |r1 − r2| < ε1 for two ratios r1, r2 in the test,
then a Simplex step, with one of the corresponding rows as pivot row, is performed
and checked whether a degenerated corner has been reached. If that’s the case,
the algorithm ends successfully. Else, backtracking is done, which means the last
Simplex step is withdrawn. Then ε1 is reduced, as long as ε1 > ε2, and the next step
takes the pivot row provided by the minimal ratio test. The algorithm continues
until either a degenerated corner or the `1-solution is found.
This improves the rate and reduces the importance of a well-adapted ε.

5.2. Highly Degenerated Corners

A highly degenerated corner is a corner in the solution space with xi = 0 for almost
all components xi. They are untypical for most applications of the Simplex algorithm
and lead to problems during implementation.

5.2.1. Secondary Objective Function

Usually, for non-sparse linear optimization one tries to evade degenerated corners.
For sparse reconstruction, they are desired due to the containing solution, but only
in the second Simplex phase. There, the algorithm stops successfully after reaching
a degenerated corner. But as mentioned in Chapter 3, the goal of the first phase is
to reach a valid corner of the solution space. Because the Simplex tableau contains
artificial variables for this purpose, a degenerated corner in the first phase is not
already a solution for the sparse reconstruction problem. In general, the end of the
first phase is recognized due to fact, that the secondary objective function reaches
its maximum z′ = 0. In highly degenerated cases, the value z′ = 0 is reached often,
even if columns of the artificial variables do still consist of unit vectors. The problem
here is, that after the reduction of the tableau, the application of further Simplex
steps might lead to corners outside of the valid solution space. To prevent this, the
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criteria to stop the first Simplex phase needs also to contain ∀j : αj ≤ 0, which is
already utilized in Section 3.1.3.

5.2.2. Anti-Cycling Strategy

Due to numerical imprecision and the extraordinary amount of zeros in those highly
degenerated cases, the algorithm often starts cycling. Even the rule of Bland fails in
combination with the minimal ratio test. The problem is, that these zeros also lead
to ratios of value zero, which should be regarded for not leaving the valid solution
space, but do not improve the objective function. Therefore, another strategy is
proposed:

As preparation, let be U be the set of columns consisting of unit vectors (ignoring
the row for the objective function). One looks for U ′ ⊂ U corresponding to the
artificial variables. Since xi ∈ R is considered, those are the columns i > 2N . All
rows of U ′ containing ones form the set R.

Choose pivot column c by rule of Bland.

Case 1: If all ratios of the minimal ratio test of column c are unequal to zero, use
the thereby given pivot element and continue as usual with the Simplex step.

Case 2: If at least one ratio equals zero, do case-by-case analysis:

Case (a): If the minimal ratio test, applied to the rows with bi > 0, returns
a pivot row r ∈ R, then ar,c is the pivot element.

Case (b): Else, sort the coefficients of column c ai,c descending and check
them consecutively if i ∈ R. If yes, ai,c is the pivot element.

Case (c): If no pivot element is chosen so far, check if R is empty.

Case (i): If R 6= ∅ : ∀i αi > 0: Look for a row providing a positive ratio
at any r ∈ R for pivot.

Case (ii): If R = ∅ : ∀i αi > 0: Look for any positive ratio for pivot.

The strategy works as follows: As long as no zeros occur, the behavior is as usual
(see Chapter 3). When zeros appear, the goal is to eliminate the unit vectors in the
columns of the artificial variables, so they are set to zero at the extraction of the
solution from the tableau. This can be achieved by choosing rows of R, which are
the rows of the unit vector columns for the artificial variables that contain ones. If
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there’s no such row in the column c, given by the rule of Bland, then one has to take
another column. If R is empty, the artificial variables are already eliminated and
the remaining goal is to maximize the secondary objective function with any valid
pivot element, that doesn’t lead to leaving the solution space.

Due to the structure of the sparse reconstruction problem, the solvability of the
first phase is known. Hence, a more simple strategy could have been given, but the
proposed one is more general and possibly also covers cases of imprecision.

5.3. Hashtables for Histograms

For the calculation of the histograms, another program has been developed. The
main problem is the huge number of corners that needs to be regarded. The pro-
cedure is to start with the `1-solution and do a breadth-first search. But since the
graph is cyclic, a lot of corners are regarded multiple times. To handle this exponen-
tial growth of possible neighbors, already checked solutions need to be marked. The
enumeration of the corners is not feasible and not effective. Therefore, an approach
utilizing hashtables is applied. Each regarded corner is checked whether it is sparse
or not and if it is already contained in the hashtable. For this purpose, the hashvalue
of the corresponding vector x is chosen as key element in the table. If the key does
not exist so far, it is added to the table and the Simplex tableaus of all neighbors of
the regarded corner are added into a queue (together with the current depth). If the
key already exists, the corner is skipped and the next one is taken from the queue.
As soon as the unique sparse corner is found, the algorithms stops and returns the
calculated distance.
The previously mentioned numerical effects harden the problem, because small dif-
ferences give a completely different hash. To prevent this, every component of x is
rounded to six decimal places before hashing.

Using this approach, it is possible to determine the distances for small N , M as seen
in Figures 4.2 and 4.3 but only up to a certain sparsity k

M
. Afterwards the distances

get too large, resulting in too many corners to check. These lead to a heap space
exception due to an overflowing queue, limited by provided system resources.
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6. Conclusion and Future
Research

In this thesis, the Simplex algorithm is explained in detail and several modifications
for the application in sparse vector recovery are proposed. Those are compared
among themselves and to the popular OMP as reference.

To estimate the expected improvement due to the modifications more accurately, a
statistical analysis of the solution space is performed. The distance from the `1- to
the `0-solution, for varying k, is visualized in histograms for two different dimensions.
It turns out that the solutions are very close to each other for small values of k, but
the distribution shifts for larger k.
The simulation operating on Gaussian sensing matrices shows a differently large gain
for all variants in comparison to the default Simplex algorithm. For small values of
N and M , this gain is higher and it decreases for larger dimensions.
Utilizing coherence optimized sensing matrices, here BASC-based [11], raises the
reconstruction rate even further.

Furthermore, the runtime of the algorithms is investigated by statistical analysis.
The number of Simplex steps in the two different Simplex phases is measured for
changing parameters N , M , k. It turns out that the number of steps in the first
phase depends almost just on M , i.e. the number of equations. It is the same for
all variants. Whereas for the second Simplex phase, the number of required steps
differs for the variants, especially for small k

M
. All of them need fewer steps than

the default Simplex algorithm utilizing the rule of Bland, but the more complex
variants reduce the number even further.

At last, obstacles for implementation are discussed: numerical problems, the behav-
ior for highly degenerated corners and the huge number of corners. Most of them
are due to the special, highly sparse optimization problem. Applied countermea-
surements are presented.

More research could be done regarding several questions. Is it possible to avoid
occurring imprecision by using a number representation as fractions for reconstruc-
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tion? Therefore, the sensing matrices have to be adapted and the elimination steps
should be calculated over Q. This would also need the components of the sparse vec-
tor to be rational numbers, but might simplify the reconstruction. Additionally, this
might lead to some noise resistance and its quality should be determinable thereby.

The next question rises due to the fact, that the whole investigation in this thesis is
done without noise taken into account. Hence, the next step should be the analysis
of the behavior for those cases. For this purpose, an additional `2-minimization
could be introduced in the style of [23], where this is performed using a Simplex
extension.

In addition, a more precise estimation of the distribution of the distance from the
`0- and `1-optimal corner would be desired. Thus, better adapted strategies could
be developed.

And last but not least, some research on the complexity of the proposed variants of
the sparsity aware Simplex algorithm needs to be performed. Not just a theoretical
analysis regarding required floating point operations would be nice, but also some
approaches to reduce their number. E.g., the number of variables doubles for xi ∈ R
instead of xi ≥ 0. Maybe there is a way to evade this step, and therefore, the
increased complexity.
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A. Appendix

A.1. Success Rates for Gaussian Matrices
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(a) N = 48, M = 16 ↔ N/M = 3
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(b) N = 64, M = 16 ↔ N/M = 4

Figure A.1.: Comparison of the success rate over k/M for the algorithms from Ta-
ble 4.1 for Gaussian matrices averaged over 1000 runs for each k with
success if |x̂− x| ≤ 10−14 componentwise.
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Figure A.2.: Success rate over k/M for the remaining variants of the analysis from
Section 4.2.1. The value M = 16 is fixed, N varies. The reconstruction
is successful, if |x̂− x| ≤ 10−14 componentwise.
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Figure A.3.: Success rate over k/M for the remaining variants of the analysis from
Section 4.2.1. The value N/M = 2 is fixed, N and M vary. The
reconstruction is successful, if |x̂− x| ≤ 10−14 componentwise.
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A.2. Success Rates for BASC Matrices
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(a) N = 32, M = 16 ↔ N/M = 2
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Figure A.4.: Comparison of the success rate over k/M for the algorithms from Ta-
ble 4.1 for BASC matrices averaged over 1000 runs for each k with
success if |x̂− x| ≤ 10−14 componentwise.
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(a) N = 64, M = 16 ↔ N/M = 4
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(b) N = 80, M = 16 ↔ N/M = 5

Figure A.5.: Comparison of the success rate over k/M for the algorithms from Ta-
ble 4.1 for BASC matrices averaged over 1000 runs for each k with
success if |x̂− x| ≤ 10−14 componentwise.
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Figure A.6.: Success rate over k/M for M = 16 with N/M = 1.5 (green), N/M = 2
(magenta), N/M = 3 (red), N/M = 4 (blue) and N/M = 5 (black)
averaged for 1000 runs with BASC matrices for comparison to Fig-
ures A.2 and 4.6 analyzed in Section 4.2.1.
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Figure A.7.: Success rate over k/M for N/M = 2 with M = 4 (blue), M = 8
(magenta), M = 16 (black), M = 32 (red) averaged for 1000 runs
with BASC matrices for comparison to Figures A.3 and 4.8 analyzed
in Section 4.3.
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A.3. Comparison of Success Rate for BASC and
Gaussian Sensing Matrices
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Figure A.8.: Influence of BASC matrices on the remaining variants of the analysis
from Section 4.2.2 forN = 32,M = 16. The reconstruction is successful
if |x̂− x| < 10−14 componentwise.
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Figure A.9.: Influence of BASC matrices on the variants of the analysis from Sec-
tion 4.2.2 for different dimensions N = 80, M = 16, N/M = 5. The
reconstruction is successful if |x̂− x| < 10−14 componentwise.
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A.4. Runtime Analysis in Simplex Steps

A.4.1. Simplex Phase One
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Figure A.10.: Iterations required over k/M in the first phase by the different variants
from Table 4.1 of the algorithms for M = 8.
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A.4.2. Simplex Phase Two using Rule of Bland
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Figure A.11.: Iterations required by Var. A (default Simplex algorithm) using rule
of Bland for the second phase using Gaussian matrices over k/M .
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A.4.3. Simplex Phase Two for Gaussian Matrices
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Figure A.12.: Comparison of required Simplex steps for the second phase for several
variants from Table 4.1 over k/M using Gaussian matrices.
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A.4.4. Simplex Phase Two for BASC Matrices
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Figure A.13.: Comparison of required Simplex steps for the second phase for several
variants from Table 4.1 over k/M using BASC matrices.
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