
Project: Automatic Speaker Recognition

Thomas Leichtle

August 15, 2013

1 Introduction

In the degree program for the M.Sc. in Computer Science, a course related
project has to be done. I chose this one, because it’s pratical and my interests
in this field go back to the time before I started studying. Also even if the
problem of automatic speaker recognition (ASR) is well known and solved
in a sufficient way for most applications, it requires different steps that can
be transfered to other classification problems. These steps are described in
the following chapters, starting with feature extraction in chapter 2 over
creating a model for data reduction in chapter 3 to methods for classification
in chapter 4. In all three chapter first some general information is given and
afterwards some examples are named and described.
After the theoretical part there are experimental results, experience reports
and the description of the implementation as the practical part, for which a
ASR program was implemented in C++.

2 Methods For Feature Extraction

Classification problems are usually solved using features. Their choice is an
important factor for the performance and quality of classification. But how
to choose the best features? It depends on the input data, in this case audio
samples of speakers reading text and on the things to classify. The features
should be invariant in respect of different changes. For example for ASR the
features should be invariant to the spoken text, to volume and so on. Since
ASR has been solved, there exist features with that properties. Both methods
mentioned here try to model the vocal tract including tongue, teeth, etc. of

1

humans - or at least try to extract information correlated to it - because its
shape determines how a person sounds.
For the calculation of the features some general preprocessing steps have to
be done. Since the input data is a bytestream and the goal is to have features
for each timestep, it is necessary to apply windowing - i.e. splitting up the
stream into data blocks (frames) of length N . This makes sense, because
we humans can also recognize a speaker already after a short time interval
and not just at the end of a conversation. The parameter for configuration
is the length of the frame. On one hand, if it’s too short, tones might get
cut off what results in bad recognition performance. But on the other hand,
if it’s too long, the features are smoothed over multiple tones what makes
the recognition text dependent. For the implementation in chapter 5 a frame
length of 32ms is used. Since the test-inputs are recorded with 16kHz, there
are N = 512 samples per frame. The frames are created with an overlap as
seen in figure 1. Later the feed M = 256 will be used.
After the windowing a hamming filter (figure 2) is applied. Therefore each
frame is multiplied with w(n) = 0.54 − 0.46 · cos(2πn

N−1
), n ∈ {0, . . . , N − 1},

i.e. each sample is weighted depending on its temporal distance to the center
of the frame to smooth edge effects.

Figure 1: Windowing of input data. Create
frames of length N with feed M .

Figure 2:
Hamming window defined as
w(n) = 0.54− 0.46 · cos(2πn

N−1
),

n ∈ {0, . . . , N − 1}

2

2.1 Linear Prediction Coefficients

Some simple features for ASR are Linear Prediction Coefficients (LPCs) -
see also [SS]. Given the datapoints of a frame s(0), . . . , s(N −1), take first p
samples s(0), . . . , s(p−1) and represent s(p) as a linear combination of them:
s(p) = aps(0) + ap−1s(1) + · · ·+ a1s(p− 1). p is called the order. Shift one
position and repeat this for the rest of the frame.

s(n) =

p∑
k=1

aks(n− k)

The resulting linear system of equations (LSE) has p variables and N − p
equations. Later p = 12 is used and therefore it is overdetermined. To
minimize the error

E(a1, . . . , ap) =
∑
n

(
s(n)−

p∑
k=1

aks(n− k)

)2

the partial derivations are set to zero.

∂E

∂ai
= 0 i ∈ {1, . . . , p}

∂E

∂ai
= −2

∑
n

(
s(n)−

p∑
k=1

aks(n− k)

)
s(n− i) = 0

This can be rewritten as∑
n

s(n)s(n− i) =

p∑
k=1

ak
∑
n

s(n− k)s(n− i)

Using r(i) :=
∑
n

s(n)s(n + i) leads to the LSE r(i) =
p∑

k=1

akr(|k − i|)
r(0) r(1) r(2) . . . r(p− 1)
r(1) r(0) r(1) . . . r(p− 2)
r(2) r(1) r(0) . . . r(p− 3)

...
...

...
. . .

...
r(p− 1) r(p− 2) r(p− 3) . . . r(0)

a1
a2
...
ap

 =

r(1)
r(2)

...
r(p)

The matrix is symmetical with identical elements on the diagonal. Such
matrices are called Toeplitz-Matrices and there are very efficient algorithms
to solve such LSE, like the Durbin-Levinson algorithm. After calculation,
the values a1, . . . , ap are the extracted features for this frame.

3

2.2 Mel Frequency Cepstral Coefficients

More advanced features in ASR are the Mel Frequency Cepstral Coefficients
(MFCCs). They are more correlated to human hearing [Sch]. The proce-
dure of extraction the mfccs can be roughly described by the following steps
[Cam97]:

1. window the signal

2. take the Fast Fourier Transform (FFT)

3. take the magnitude

4. take the log

5. warp the frequencies according to the mel scale

6. take the inverse FFT

As mentioned in [Log00] the amplitude in step 3 can be taken since it is
more important than the phase of the signal. The logarithm is used, because
the perceived loudness is approximately logarithmic. In step 5, the different
spectral components are binned and it is done according to the mel scale,
because lower frequencies are more important for speech than higher. The
inverse FFT at the end gives the mfcc features for the frame.
It won’t be explained in more detail since existing libraries are used later on.
For more information take a look at the references mentioned above.

3 Methods For Speaker Modelling

The next step in the process of ASR is the modelling of speakers. By pro-
cessing a file of about 1 minute length with a frame size of 32ms and a feed
of 16ms (see chapter 2) there are about 3750 feature vectors and it would
be even more if more voice data for learning is available. That is the reason
why smaller, more compact models need to be created.

3.1 Cluster Analysis & Competitve Learning

For the whole set of feature vectors Si for each speaker i, a set of new feature
vectors Ci with k prototypes, i.e. |Ci| = k is needed. This is achieved by

4

using an incremental k-means algorithm for cluster analysis. In pseudocode
it works as follows:

1. Define number of prototypes k and maxepoch

2. Initialize the k prototypes c1, . . . , ck
(e.g. choose random from given feature vectors)

3. While (epoch < maxepoch) do

• increment epoch

• choose x ∈ Si

• calcuate j = argmini(‖x− ci‖) (winner detection)

• cj = cj + l(x− cj) (winner update)

Instead of counting epochs it would also be possible to stop when the change
‖∆C‖ after presenting N datapoints is smaller than a chosen ε. l is the
learning rate and chosen as l = 0.05.

Applying the process for each speaker results in a set of codebooks Ci with
k vectors each. Additionally to efficiency it creates some kind of fairness for
voting, since now each speaker has the same amount of data, even if an
uneven amount of input data was available for learning.

Figure 3: From input feature vector sets to codebooks.

5

4 Methods For Classification

Extracting the same features from new unknown inputs as for learning gives
a set of feature vectors Y per input. An input can be a file or for live
recognition also a sequence from a microphone.

4.1 Majority Voting

For each feature vector y ∈ Y the most likely class is calculated. This is
done by looking for the speaker i with the prototype cj with the smallest
euclidean distance to y and then this speaker gets a vote. After all vectors
are classified the speaker with the most votes wins. It would be possible to
evaluate the confidence of the decision - either by the ratio of received votes
to all votes or by the distance to the speaker with the second most votes.
Since the goal here is a single decision, the confidence is dropped.

5 Description Of Implementation

As the practical part of this project, implementation and evaluation of a
software for ASR was done. There are two different variations. The first one
is completely written in C/C++ and uses OpenMP (http://openmp.org/)
for parallelization. LPC features are calculated with the Durbin-Levinson
algorithm and is, as windowing, k-means and majority voting, self imple-
mented. For MFCC features an approach using FFTW (http://fftw.org/)
and libmfcc (http://code.google.com/p/libmfcc/) was developed, but due to
performance issues a second version of the program was created.
The second variant uses openSMILE [EWS10] for all preprocessing steps till
mfccs. Compression with k-means and classification is done the same way as
in the first variant.

6

6 Statistical Experiments

For evaluation a dataset of 10 speakers with 3 files of length > 60 seconds
was chosen. They were recorded with 1 channel at 16kHz sampling rate.
2 of those files were used for learning. From the last file random snippets
of different length (1sec, 2sec, 5sec, 10sec) were cut out and classified. Ad-
ditional parameters were window/frame size N = 32ms = 512samples, feed
M = 16ms = 256samples and maxepoch = 100 for kmeans. The results are
shown in the following subsections.

6.1 LPC features

The order was p = 12 for LPC calculation. Each of the tables in figure 4 was
created by randomly taking 1000 snippets of given length from the classifi-
cation set.

Figure 4: LPC features: Each row and column represents one speaker. It
shows how likely it is that speaker i (vertical) is classified as speaker j (hor-
izontal). k = 50 prototypes are used in compression and the length of the
input data for classification varies from 1 second on the left, over 2 sec, 5 sec
to 10 seconds on the right.

In figure 4 it is good to see how the rate of correct classification increases
with the number of frames for decision. 1 second includes about 60 frames
which are classified and used for the majority voting, where 10 seconds give
about 600 votes. But even then there is a relatively high error rate for speaker
7 to 9, indicated by the gray pixels not on the diagonal.

7

6.2 MFCC features

For MFCC features 13 frequency bins have been used. Again each of the
tables in figure 4 was created by randomly taking 1000 snippets of given
length from the classification set.

Figure 5: MFCC features: Each row and column represents one speaker.
It shows how likely it is that speaker i (vertical) is classified as speaker j
(horizontal). k = 50 prototypes are used in compression and the length of
the input data for classification varies from 1 second on the left, over 2 sec,
5 sec to 10 seconds on the right.

In figure 5, like in figure 4, the correct classification rate increases with the
length of the snippets. But this time it reaches nearly 100 percent accuracy.
This shows the advantage of mfcc over lpc for text independent automatic
speaker recognition. But as mentioned before it is easier and faster to calcu-
late LPCs.

The classification rate also varies with other features of the creation of
the model, like the number of prototypes, learning rate and maxepoch. Since
this is only a proof of concept to get a deeper understanding, no further
optimization of these parameters is done.

8

7 Experience Live-Recognition

The live system is based on the second version of the program, the one with
openSMILE. It supports reading from microphone by portaudio
(http://portaudio.com) and therefore works the same way as the offline ver-
sion. The speaker models are created by prerecorded offline data and only
new data for classification is recorded on the fly. For the majority voting a
predefined number of frames per decision is taken, e.g. 75 frames per deci-
sion. Less frames result in a faster and less accurate decision, while more
lead to a more accurate one. The problem using more frames is that the
accuracy is lost if the speaker stops talking within the frame.
For pratical reasons a sequence of ’silence’ was recorded as an additional
speaker. This prevents the system to make unconfident decision for any
speaker if noone is talking and results in the choice of this silent speaker.
The program works very well if only low background noise is present. With
increasing noise the correct classification rate decreases as expected.

References

[Cam97] J. P. Campbell. Speaker recognition: A tutorial, 1997.

[EWS10] Florian Eyben, Martin Wöllmer, and Björn Schuller. Opensmile:
the munich versatile and fast open-source audio feature extractor.
In Proceedings of the international conference on Multimedia, MM
’10, pages 1459–1462, New York, NY, USA, 2010. ACM.

[Log00] Beth Logan. Mel frequency cepstral coefficients for music modeling.
In International Symposium on Music Information Retrieval, 2000.

[Sch] Stefan Scherer. Mfcc implementierung.
http://www.informatik.uni-ulm.de/ni/Lehre/SS06/PraktikumNI/MFCC.pdf.

[SS] Alfred Strey and Friedhelm Schwenker. Folien zum lpc.
http://www.informatik.uni-ulm.de/ni/Lehre/SS06/PraktikumNI/LPC.ps.

9

