Hoch-, Tief-, Sattel- und Wendepunkte

1 Merkhilfe

Um sich den Zusammenhang zwischen einer Funktion f(x) und ihrer Ableitungen f'(x), f''(x) zu merken, kann

$$f(x)$$
 NEW
 $f'(x)$ NEW
 $f''(x)$ NEW

verwendet werden, wobei N für Nullstelle, E für Extremstelle und W für Wendestelle steht. D.h. hat die erste Ableitung f'(x) eine Nullstelle (N), so besitzt die normale Funktion f(x) dort eine Extremstelle (E) [oder einen Sattelpunkt], usw.

2 Mit Hilfe der Ableitung

2.1 Extrempunkte/Sattelpunkte

Berechnung von Hoch-/Tief- (= Extrempunkten) und Sattelpunkten: Setze 1. Ableitung gleich 0 (da dort die Steigung den Wert 0 besitzt)

$$f'(x) = 0 \Rightarrow \text{nach } x \text{ auflösen für mögliche Stellen } x_1, x_2, \dots, x_n$$

Überprüfung der Stellen durch Einsetzen in die 2. Ableitung

$$f''(x_1) = \dots \quad f''(x_2) = \dots \quad f''(\dots) = \dots \quad f''(x_n) = \dots$$

Dabei werden folgende 3 Fälle unterschieden:

 $f''(x_i) > 0 \Rightarrow \text{Es handelt sich um einen Tiefpunkt.}$

 $f''(x_i) < 0 \Rightarrow \text{Es handelt sich um einen Hochpunkt.}$

 $f''(x_i) = 0 \Rightarrow \text{Es handelt sich um einen Sattelpunkt.}$

(Berechnung von Extrem<u>stellen</u> wäre hier vorbei, da Stellen = x-Werte!) Berechnung der y-Koordinaten der Punkte $P_i(x_i/y_i)$ durch Einsetzen in die normale Funktion

$$f(x_1) = y_1$$
 $f(x_2) = y_2$ $f(\dots) = \dots$ $f(x_n) = y_n$

Somit erhält man $P_1(x_1/y_1)$, $P_2(x_2/y_2)$, ..., $P_n(x_n/y_n)$, die oft je nach Hoch-, Tief- oder Sattelpunkt auch mit H/T/SP bezeichnet werden.

2.2 Wendepunkte

Berechnung von Wendepunkten:

Setze 2. Ableitung gleich 0 (da dort die Krümmung den Wert 0 besitzt)

$$f''(x) = 0 \implies$$
 nach x auflösen für mögliche Stellen x_1, x_2, \dots, x_n

Überprüfung der Stellen durch Einsetzen in die 3. Ableitung

$$f'''(x_1) = \dots \quad f'''(x_2) = \dots \quad f'''(\dots) = \dots \quad f'''(x_n) = \dots$$

Hier gibt es 2 verschiedene Betrachtungsweisen:

1. Wendepunkt / kein Wendepunkt:

$$f'''(x_i) \neq 0 \Rightarrow \text{Wendepunkt}$$

 $f'''(x_i) = 0 \Rightarrow \text{Kein Wendepunkt}$

2. Krümmungsänderung:

$$f'''(x_i) > 0 \Rightarrow \text{Von Rechts- auf Linksgekrümmt}$$

 $f''(x_i) < 0 \Rightarrow \text{Von Links- auf Rechtsgekrümmt}$
 $f''(x_i) = 0 \Rightarrow \text{Kein Richtungswechsel}$

(Berechnung von Wende<u>stellen</u> wäre hier vorbei, da Stellen = x-Werte!) Berechnung der y-Koordinaten der Punkte $P_i(x_i/y_i)$ durch Einsetzen in die normale Funktion

$$f(x_1) = y_1$$
 $f(x_2) = y_2$ $f(\dots) = \dots$ $f(x_n) = y_n$

Somit erhält man die Wendepunkte $W_1(x_1/y_1), W_2(x_2/y_2), \ldots, W_n(x_n/y_n)$.